

COMPUTER-GUIDED NAVIGATION

N ENDODONTICS

COMPUTER GUIDED ENDODONTICS ADVANTAGES COMPARED TO FREE HAND

1 PRECISION

- Dynamically navigated accesses are associated with higher optimal precision (drill path centered) to locate calcified canals in comparison with the freehand technique (75% vs 45%)¹
- The DNS group was significantly more precise, showing smaller mean values in the angulation (4.8°) and in the maximum distance from the ideal position (0.34 mm)²

2 TISSUE PRESERVATION

- Dynamically navigated accesses resulted in significantly less mean substance loss in comparison with the freehand technique (27.2 vs 40.7 mm3)²
- Substance loss was significantly lower with dynamically navigated accesses than freehand technique (10.5 mm3 vs 29.7 mm3)⁴

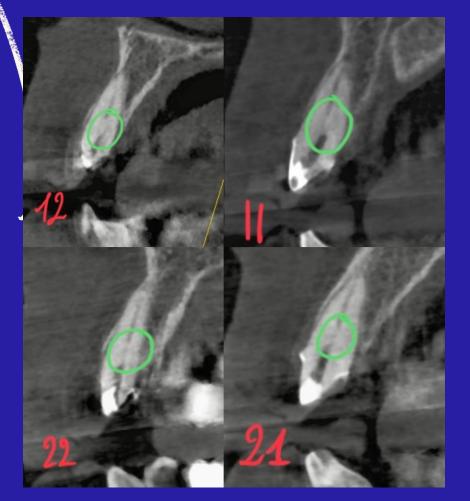
3 TIME REDUCTION

- Dynamically navigated accesses were prepared significantly faster than freehand preparations (2.2 vs 7.06 minutes)²
- Slow-speed burs through a static- guided approach in simulated calcified canals required on an average 11 minutes compared with an average drilling time of 58 seconds³

A) REPRODUCIBILITY

- All operators located a total of 156 canals, obtaining an overall success of 93% without a difference between operator experience.⁵
- Differences in substance loss between an more experienced operator (10.3 mm3) and a novice (10.6 mm3) were not significant.⁴

CLINICAL CASE


56 yo female patient, with no systemic condition is referred for performing the root canal treatment of the 4 superior incisives.

The practitioner didn't find the accesses and RCTs need to be done regarding the anterior prosthetic rehabilitation in progress

The choice of computer guided navigation over a static guided approach is based on the possibility of modifying the axis in real-time, the facility of the workflow (only a CBCT needed) and the use of all kind of burs, not just endodontic guided drills

S1

Initial CBCT 12-11 : 1-2-1 root canal typology

21-22: narrowed root canal

S2

Planification

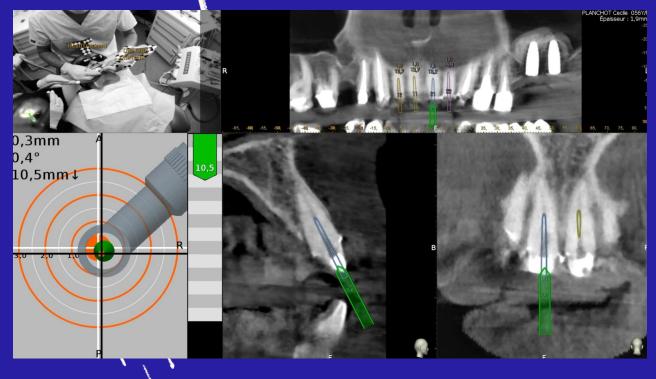
4 virtual axis are planified with the minimal size (1mm) and the roots length are mesured for information

(temporary crowns don't allow us to measure precisely)

S3

Step 3 - Rubber Dam Isolation

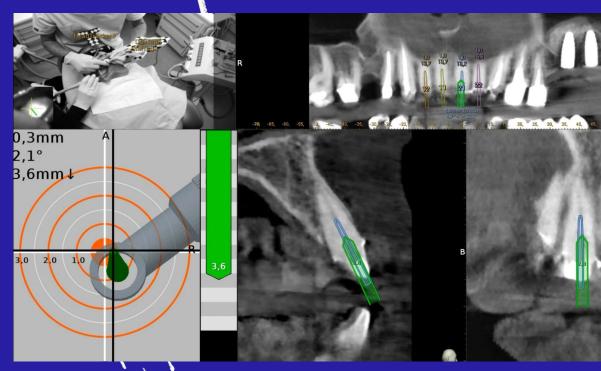
Temporary crowns are sealed with a self-curing composite material (Structur 3, Voco)



S4

Calibrations

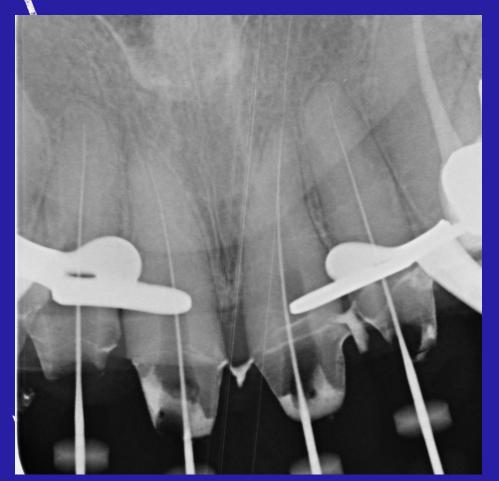
As required by the software, calibration of the tracer, the high speed contraangle and the endodontic bur.



S5

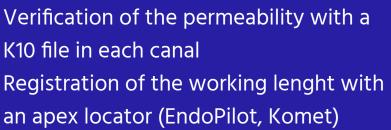
Drilling part

The first step is marking on the surface the access point for each tooth, with a high speed round diamond burr and a contraangle holded by 2 hands, to prevent slipping during the drilling.



S5

Drilling part


Coronal access is made with a high speed round diamond bur and the radicular part is done with a EndoTracer (Komet) a special endodontic bur made with a long neck (31mm or 34mm)

S6

X-ray Control

S7

Root Canal Shapping Use of the Reflex Komet System (Endopilot + Procodile Q) with a constant irrigation of 2,5 % NAOCI Verification with Gutta Percha cone of the apical adjustement

S7

Root Canal Filling

Use of the Gutta-Smart (Dentsply) to perform the warm gutta percha vertical technique and temporary obturation with a Cavit (3M)

REFERENCES

1. Jain SD, Saunders MW, Carrico CK, Jadhav A, Deeb JG, Myers GL. Dynamically Navigated versus Freehand Access Cavity Preparation: A Comparative Study on Substance Loss Using Simulated Calcified Canals. J Endod. 2020 Nov;46:1745-1751

2. Gambarini G, Massimo G, Morese A., et al Precision of Dynamic Navigation to Perform Endodontic Ultraconservative Access Cavities: A Preliminary In Vitro Analysis. J Endod. 2020;46:1286-90

3. Jain SD, Carrico CK, Bermanis I. 3-Dimensional Accuracy of Dynamic Navigation Technology in Locating Calcified Canals. J Endod. 2020 Jun;46(6):839-845

4. Connert T, Leontiev W, et al. Real-Time Guided Endodontics with a Miniaturized Dynamic Navigation System Versus Conventional Freehand Endodontic Access Cavity Preparation: Substance Loss and Procedure Time. J Endod. 2021;47:1951-56

5. Torres A, Boelen GJ, Lambrechts P, Pedano MS, Jacobs R. Dynamic navigation: a laboratory study on the accuracy and potential use of guided root canal treatment. Int Endod J. 2021 Sep;54(9):1659-1667